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Symmetric diffusion equations, barodiffusion, and cross-diffusion in concentrated liquid mixtures
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In models of diffusion in multicomponent mixtures, the current practice is to derive equations for an isobaric
system. The equations are nonsymmetric in relation to the components of the mixture, and the concentration of
solvent is assumed to be governed by the conservation of mass instead of its own corresponding diffusion
equation. For concentrated mixtures, the solvent component is selected arbitrarily, which makes interpretation
of the experimental data dependent on the choice of the interpreter. In this work, we derive a symmetric system
of equations, made possible by the introduction of a spontaneously produced secondary pressure gradient. The
effect of that pressure gradient is barodiffusibarophoresis defined by the force expressed as the secondary
pressure gradient multiplied by the molecular volume. The model also considers the cross-diffifgisio-
phoresi$ that results from the hydrodynamic stresses associated with the local concentration-induced pressure
gradient in liquid layers surrounding individual molecules. The resulting system of diffusion equations, which
contains the secondary pressure gradient and component concentrations, is applied to ébmanyo
mixture of benzene and 1,2-dichloroethane. The steady-state system is placed in a uniform force field, and the
effect of the secondary pressure gradient on the field-induced migration is discussed. Fluctuation dynamics in
a system with no external force field is also discussed. The numerical results predict the establishment of lower
concentration gradients compared to standard theory. Also, the predicted concentration dependence in the
effective diffusion coefficient measured by dynamic light scattering is different compared to standard theory.
Finally, experiments are proposed to further evaluate differences between the new model and the standard
approach.
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I. BACKGROUND This approach is reasonable when one considers a solvent
Molecular diffusion is a phenomenon that is important forthat contains dissolved components at low concentrations be-
ause the solvent can nonarbitrarily be selected as the sec-

a number of natural and technological processes, and it iS X ; AT
studied intensively by both theory and experimentation. Th&ndary component, having a concentration distribution that
llows from that of the other components, as described by

equations that are used to describe the diffusion process wefe"™ . i :
heir respective diffusion equations. However, the approach

derived nearly 100 year ago. The most general form of the =" ;
diffusion equations is obtained by nonequilibrium thermody-1ailS in concentrated systems, where the concentrations of all
components are of the same relative magnitude. In such situ-

namics[1], or by the Maxwell-Stefan approad2]. Some . ; X
approac[h]es to d)i/ffusion rely on specific r%%delg}?f the mediations. selection of the component to be described by conser-

For example, Huntef3] derives a diffusion equation in vation of mass instead of its respective diffusion equation is

. . ; . rbitrary, even in more generalized thermodynamic formula-
which the medium is considered to be a system of halr{ﬁilons. Consequently, current theories of diffusion relyMn

spheres. All these systems of equati_ons_, beginning.from th@l equations forN components, yielding a mathematical
oldest papers to the most recent publicatiph§], containan  ,5piem that lacks a trivial solution. Certainly, a mathemati-
important simplification. Thus, for a multicomponent mix- ca| solution must exist that yields the same result, indepen-
ture containingN componentsN-1 diffusion equations are gent of which component is selected to be the solvent.
written, and for the last component, the concentration is 0b- The current approach to diffusion also uses a system of
tained from the equation for the conservation of mass, ingquations derived for an isobaric systéf-5, which ne-

for the Nth component is sometimes called the solvent refersystem. et it is generally accepted that an osmotic pressure
ence frame in diffusion and thermodiffusion measurementsyradient should exist in nonuniform liquid mixtures. Thus,

In the Maxwell-Stefan anpl nonequilibrium thermodynamlcWhen a volume forcd is present in a stationary system, a
approaches, the problem is formulated as a system of equa- ) S .

tions that relate the molar fluxes fol-1 components to the Macroscopic pressure gradiéVitly,c, must be established
gradients of their chemical potentials, while the chemicalf® compensate the volume force, in order to maintain hydro-
potential of theNth component is found from the Gibbs- static eqqlllbrlum in thg mlx_ture. The general equation for
Duhem equation, or from an equation that expresses the coRydrostatic equilibrium is written a]

servation of mas$4,5]. In order to test the theory with ex- Y11 _i=0 1)
perimental data, the general equations are reformulated to macro '

include component concentrations instead of chemical poterin Ref. [6], for example, the authors discuss the production
tials. of a pressure gradient produced by an external field, which is
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assumed to arise from the pressure dependence of the chemi-In any nonuniform mixture, an osmotic pressure gradient
cal potentials, and they arrive at the molecular mass transfawill be present. For multicomponent mixtures, this pressure
process termed barodiffusion. However, there is no discusgradient balances the volume force, which is present even in
sion of the spontaneous establishment of such a pressure gtae absence of an external field. This volume force can be
dient, and its possible role in the system. considered a diffusiophoretic force, which acts on molecules
In Ref. [3], Eq. (1) is formulated as a condition for the placed in a concentration gradigi)]. Diffusiophoresis can
absence of convection-diffusion flux of the considered combe described as the process of one component’s movement in
ponent, the presence of a concentration gradient in another compo-
nent. Because we are not aware of any theory developed to
}aHmacro%n_ En—ﬁ @ date that is based on a kinetic approach, calculation of the
{ an /o cross-diffusion coefficient is part of this paper. In order to
determine the secondary pressure gradient in a multicompo-
Here { is the hydrodynamic friction coefficient is the nu-  nent mixture, we first calculate the diffusiophoretic mobili-
meric concentration of the considered species,fgrd/nis  ties (cross-diffusion coefficienjsfor the components. These
the force acting on a single particle. In that work, the follow- parameters are substituted into a symmetrized system of dif-
ing equation, which relates the diffusion coefficiénhto the  fusion equations, where the barophoretic force expressed by

>

pressure gradient, was obtained: Eq. (4) is taken into account. The resulting system of equa-
tions is a closed system that describes the diffusion process.
:}% 3) In our calculations, we use a hydrodynamic approach
{ dn taken in the theory of particle diffusiophore$id0], as well

as in theories of thermophoregihe movement of mass in
response to a temperature gradjesit molecules and poly-
fhers [11]. In this microscopic-kinetic approach, diffusio-

In Ref. [7], Eq.(3) is discussed in the context of irreversible
thermodynamics and statistical physics, and the osmoti

pressure gradient is considered to be the main driving forcg, s is considered to result from hydrodynamic stresses

for dn‘fu;mn. on the molecule. These hydrodynamic stresses are expressed
In this paper, we propose an approach based on the obvy, o4 jients in the velocity profile of the liquid, as calculated

ous statement that when a volume force acts on a system, E,B-g the Navier-Stokes equatidf]

when a concentration gradient is present, a pressure gradie ’

is established spontaneously. This pressure gradient plays the

role of the(N+1)th unknown function in the system of dif- AU = = VI, (5)

fusion equations. In the context of nonequilibrium thermody-

namics, this adds the teroll,,,..to the chemical potentials .. i o i

of the molecules, where; is the molecular volume of thieh ~ Hereuis the velocity of the liquidLq is the local pressure

component in the mixture. Parametercan be expressed as distribution around the molecule due to its interaction with

the partial molecular volume, and determined by a change ifther molecules, and; is the viscosity of the liquid. The
the volume of the system by the addition of one molecule ofocal pressure dlstr|b_ut|o_n is obtained by the condlt.lon of the
the given kind. Also, for such a nonisobaric system, theoc@l equilibrium, which is expressed as the equation of hy-
Gibbs thermodynamic potential should be considered insteadfostatic equilibrium in the liquid around the molecule of the
of the Helmholz thermodynamic potential, which has previ-ith kind [see Eq(1)],

ously been used in deriving the system of diffusion equations

[1,2,9. The observable effect of the secondary pressure gra- dIi N 4.
dient on molecular diffusion is a drift motion that can be —lc > $i 9%y =0. (6)
described as the respective barodiffusion force acting on the dr  jSivj dr
molecule,
=~ 0V acro (4) Here, r is the radial coordinate for a moleculé; is the

volume fraction of molecules of thgh kind, v; is the spe-

In Ref. [7], a term similar tay;I1,,,¢0iN the chemical poten- cific molecular volume occupied in the liquid by a molecule
tial was considered, but no conclusion was made as to itef thejth kind, and®;; is the respective interaction potential.
possible role in molecular motion. For liquids with low electrical conductivity, such that ions

A common example of a barodiffusion force is the are absent and molecular dissociation does not occur, only
Archimedes force, where the pressure gradient is caused liipole-dipole interactions play a ro[@2]. Dipole-dipole in-
gravity [8]. We call this force barophoretic, and the resultingteractions include those between permanent dipgtes
motion barophoresis rather than barodiffusion, because thiéeesom interaction those between permanent and induced
induced motion of the molecule is directed, whereas diffu-dipoles(the Debye induction interactignand those induced
sion is a random walk. A similar situation is raised in the spontaneouslythe London or dispersion interactipnAc-
theory of ion movement in electrolytg9], where the diffu- cording to the Fowkes approadhi?], these dipole-dipole
sion equations are supplemented by an equation that definggeractions have a common dependence on the distance be-
the electric field required to maintain electrical neutrality intween dipoles, and may be written in the following simple
the system. form:
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16VA A (r:r:)3 o . =
Dy(r)=- ;Ja(r_lrj)_, (7 nf U’ - odS- nf U’ - VIldVv
or s v
whereA; andA; are the Hamaker constants for the respective _ n,f i o'dS— ”’J GV dV. (11)
liquids, andr; andr; are the corresponding molecular radii. s v

Il. THEORY Here,Sis the outer surface of a moving body,is the outer
volume surrounding this surface, afds the hydrodynamic
stress tensor expressed by components of the flow velocity
In order to define the pressure resulting from the interacgradient[6]. The primed and unprimed parameters in Eg.
tion of molecules, we assume that the fraction of free volumé11l) are interrelated in two separate problems on the move-
in liquids is small enough that intermolecular interactions doment of the same body. The theorem was proven for the case
not induce appreciable variations in the liquid molecule conin which only a volume force is acting in the liquid, i.e., in
centration around a selected molecule. Consequently, we ugee absence of a pressure gradient. However, the Navier-
a constantunperturbeyl volume fractiong; in solving Eq.  Stokes equation allows the external volume force in a liquid

A. Local pressure distribution around the molecule

(4) to obtain the pressure profile around the molecule, to be interchanged with a predetermined “external” pressure
gradient. Thus, the reciprocal theorem can be “generalized”
, N b to situations in which a predetermined pressure gradient, re-
M. = - > —lCDij. (8) lated to the excess pressure, is present in a liquid. Using this
i=1 Y] generalization, we employ the results of REE3], which

. , . .. relates particle phoresis to the volume force and fluid veloc-
Equation(8) defines the local excess pressure in the liquid, .~~~ - . . .
mixture due to the presence of molecules ofithekind and %Y distributionUs(F) around a particle moving at unit veloc-

their interaction with other molecules. Using E8), we cal-  Ity- Here, I is the radius vector directed from the particle
culate the resulting local pressure gradient in the liquid mix-CeNter to the observation point. The velocity distribution
ture: U,(F) corresponds to the boundary conditiokl(r=r;)
\ N :Jo,ljl(r:oo):f), and is defined afg]
61_[:oc: -> %6% + %ﬁjN(ﬁk- (9 R 3r 1/r\3
=1 Yl ket ) Uy () = Z?I[GO +Mig(Uo - M) ] + Z(f) [Uo = 3rig(Up - M) ],

Here By=[d(In vj)]/[d(In ¢)] is a dimensionless coefficient
that defines the relative change in the specific volume of the
jth component due to a relative change in volume fraction of . . ) ) - .
the kth componentso-called volume effegt The magnitude Whereup andng are unit vectors directed alorid, andr,

of this coefficient will be similar to the relative “synergistic’ respectively. Using the steady-state condition in which the
change in volume upon mixing organic solvents and watersum of the hydrodynamic friction and diffusiophoretic forces
i.e., 10%-10°2 Thus, when the number of the components is2cting on the particle is zero, we obtain the following general
not too high(less than tey) the second term on the right side expression for diffusiophoretic velocityp;:

of Eqg. (9) can be neglected, and the expression for the local

(12)

pressure gradient can be written as 1 - * Noamm - -
UDi = f Sin ’ﬂd’l&f ZWrzdrE _I(Ul(l) . V¢])
N . 6mriJo r j=1 Ao
Vile= -2 —V ;. (10) (13

=1 Yj
Here, ¥ is the angle between the vectaigandn,. Next, we

ubstitute the expressions for the local pressure grafient
10)] and interaction potentidEq. (7)] into Eqg. (13). After

Equation (10) represents the expression for the local
concentration-induced pressure gradient, which will be use

o solve the hydrodynamic problem of solvent flow aroundcarrying out some simple but cumbersome integral calcula-

the selected_molecule. This expression Is not related to .ant¥ons, the following expression for diffusiophoretic velocity
model equation of state for the liquid mixture, and contains

only parameters that can be independently obtained. Is obtained:

2 N [ AL
B. Flow velocity profile around the selected molecule and its Upi = SLE MV ;. (14)
diffusiophoretic mobility 27ni=s1 v

In solving Eq.(3) for a spherical particle, we use the  Using Eq.(14), we can define the partial diffusiophoretic
approach taken in Refl3], which utilizes the generalized mobility (cross-diffusion coefficient which represents the
reciprocal theorem on the invariance of the following inte-velocity of a molecule of théth kind in unit concentration
gral: gradient of thejth component, as follows:
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8r2 VAA. When we consider the secondary macroscopic pressure

rF VAA . . . .

Dij = —2777 v (15 gradient and related barophoretic force in a system, the dif-
J

fusion equation takes the following form:
From Eq.(15), the partial cross-diffusion factor, defined as

Syij=bpij/Di, where Dj=kT/6mqyr; is the Stokes-Einstein  g¢; - - Vi - N - U
diffusion coefficient of the selected molecule, can be ex- a—t':v 1Dif Vi + ¢ k—.II.VP—E SoijV o — 5'
pressed as =1 '
— (1839
_ ol VAA (L<i<N).

ij ]
3vj KT In Eqg. (18a), G; is the velocity of molecules of thith kind
wherez;!*=(477/3)ri3 is the equivalent hydrodynamic volume due to the presence of an external field or flow. Equation

of the molecule. (189 is the conventional material balance equation for the
For a binary mixture, Eq(14) takes the following form: ith component. The corresponding mass flux equation is
8@(2) Aq2) ( V1(2) A2(1)> D — N =
Upgp= ————|1-—=A/—=|Ve, (17 1=l vs+al Yivp- oY
D1~ D70 b1 oo N A J " Vi + o kTVP ngsD”w, o) |
where the subscript(2) refers to the value of the given (18b)

parameter for component 1 in the presence of component 2,
and vice versa. Equatio(il7) predicts diffusiophoresis in Equation (18b) contains, from left to right, the diffusion,
binary mixtures under the following condition: barodiffusion, cross-diffusion, and driftonvectivg terms.

Of course, the component concentrations must also satisfy

vi) [P 41 the requirement for conservation of mass,
va) V Auz) N
Consequently, even in systems with a single type of mol- > pi=1. (19
i=1

ecule, diffusiophoresis cannot be neglected when the mol-

ecules form aggregates, because the aggregates will have_a i .

larger specific volume, even in isotropic mixtures. For suchBY SUmming Eq(189 for all components, and utilizing the
aggregated species, a positive diffusiophoresis is predicteff@SS balance equation, we obtain the following expression
i.e., movement toward regions of lower concentration of thd©F the macroscopic pressure gradient:

single molecules. By contrast, in a liquid consisting largely

of associated molecules, any molecules that dissociate into

smaller fragments will undergo negative diffusiophoresis,

moving toward regions of higher concentration of the asso- VP =KT N
ciated molecules. This prediction can be easily checked by S Doy
experiment, after substituting the equation for diffusio- =
phoretic mobility into the appropriate diffusion equations to

obtain the expected concentration distributions. Thus, Eg.

(14) provides the means for writing the complete system of

diffusion equations for any system with multiple compo- Where JE_:EiN:r]i is the net flux of substance through the
nents. boundaries of the considered volume.

Note that while conservation of mass is used to obtain Eq.
. o . (20), all components are included in the system of diffusion
C. General system of symmetrized diffusion equations equations, in contrast to the classical approach where the

While the most general form of diffusion equations is concentration of the “solvent” is determined solely by con-
written using chemical potentials, this form is difficult to Servation of mass. Thus, Eq0) can be considered as a
compare with experimental data without certain additionageéneralization of the Gibbs-Duhem equations to an open
assumptions regarding the concentration dependence of tR@nequilibrium system, where substance exchange with the
chemical potential. Thus, the concentration dependence @urrounding medium is included. The Gibbs-Duhem equa-
the chemical potential is often impossible to derive theoretilions are used in Ref5] to obtain a relationship between the
cally, or to extract from experimental results. Therefore, wedradients of the component chemical potentials in an isolated
will rely on equations of mass balance and use expressiorfyStem. When one incorporates the concentration and pres-
based on Fick’s law for the diffusive flux of componefig. ~ Sure dependence of the component chemical potentials, as
Although this approach is not as general as those based @lpne in Ref[6], the Gibbs-Duhem equation in the gradient
diffusion equations derived in the context of nonequilibriumform (see Ref[S], supplement 1 to Chap. 18an be trans-
thermodynamics, they have a clear physical sense, and cdéormed into Eq.(20) with Js=0. As outlined in Ref[6], this
be evaluated with experimental data obtained in a wide rangequation can be interpreted as one that formulates the condi-
of situations, with different applied fields. tion of mechanicalhydrostati¢ equilibrium in the system

N N N
—Js+ 2 by Vi — 2 DV + 2 Uiy
i-1 i-1

ij=1

(20)
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under consideration. Because the Gibbs-Duhem equation &so be considered as a generalization of the osmotic pres-
closely related to the equation expressing the condition oéure gradient. The term proportional}}ﬁilﬁid)i corresponds
local equilibrium, one can state that mechanical equilibriumo the field produced from drift and convective ion transport
is an essential condition of irreversible thermodynamics. i, an external field or flow, i.e., the convection pressure gra-
Equation(20) is similar to the expression for electric field gjeny. it hecomes zero in an electrolytic cell due to electric
strength in an electrolytic cefB]. Parametedy is analogous  neutrality. The term proportional toy;;, which contains the
to the electric current produced by electrochemical process@gamaker constants of the components, has no direct analog,
at the electrode, which induce a current in the cell. This fieldys it s related to diffusiophoresis, which has not been studied
is established in electrolytic cells even when a concerltratioqh the theory of electrolytic cells. As stated above, the con-
gradient is absent. In Eq20), the term proportional tds tribution of diffusiophoresis can be neglected in systems of
describes the component of the macroscopic pressure gragholecules with small differences in both their Hamaker con-
ent that is related to the flux of substance passing through th&ants and their molecular volumes. In general, the diffusio-
system, i.e., the flux pressure gradient. The term proportionghoresis effect is a measure of the difference in physico-
to EﬁlDiV¢i is analogous to the field produced by the so-chemical properties of the components.
called concentration or diffusion potential, and is due to the Substituting Eq.(20) for the pressure gradient into the
difference in diffusion rates of the components, i.e., the dif-system of diffusion equationg&q. (189 and(18b)], we can
fusion pressure gradient. The diffusion pressure gradient canrite the symmetrized system of diffusion equations as

N N N N N /o
. . R : . A
Zpij¢j ) - DjV¢j+UiE <Eil_pij>¢j+j§1bDijV¢j21<r_;\/%_pik>¢k

r

(9 1 P11 i= =
—a‘f'—VDi‘:' Vg +V ha = N e & (L<ij<N),
> Pij & > Pij &;
=1 =1
(21)

wherepy; :v_ij/v_iDi is the parameter characterizing the con-work, we consider gravitational and centrifugal fields.

tribution of barophoresis. Equatiof21) is structured such Macroscopic pressure gradients may be established in
that thg effective diffusion coefficient and effective velocity systems where liquid flows or external forces are applied, as
of a given molecule depend only on the concentration ofye|| as in systems where mass transfer occurs only at the

other components. Equatig8l) demonstrates the important . nqaries. If we consider the latter case, in the absence of
role played by the macroscopic pressure gradient in the logis

cal structure of the theory of diffusiophoresis. Among other2™ liquid flow or external forces, then the flux of substance
things, it eliminates diffusiophoresis in pure liquids, which is Js in Eq. (188 and (18b) includes only the mass transfer
indeed very hard to imagine. Thus, the logical necessity of &cross interface boundaries. This transfer of molecules across
macroscopic pressure gradient is closely interconnected wita boundary could be related to an adsorption-desorption pro-
the approach used in calculating the parameters of diffusioeess, in which specific molecules are dissolving into solution
phoresis. Because this approach gives a nonzero pétital from one wall of a vessel and removed from solution by
agona) cross-diffusion factorbp;, which formally should adsorption at another wall. Such a situation could occur, for
cause diffusiophoresis in a pure liquid, its effect should beexample, in a temperature gradient, where the adsorption and
compensated by another force, which is the barophoretidesorption of molecules differ at the cold and hot walls.
force described by Eq4). In the case of a uniform steady-state mixture, where no
As Eg. (21) shows, the macroscopic pressure gradienmacroscopic external force is applied and no mass transfer at
plays a role in mixtures placed in a force field. For nonionicthe boundaries occurs, the secondary pressure gradient and
systems, this could be a temperature gradient, a gravitationatlated coupling between different components can be estab-
field, or a centrifugal force field. The interrelationship be- lished locally. In this case, the pressure gradient is related to
tween thermal diffusivity and mass diffusion is particularly fluctuations in the local concentration gradients and the re-
interesting. For example, Nieuwoudt and Lat4,15 dis-  lated cross-diffusiordiffusiophoresis Such processes may
cussed the influence of a temperature gradient on randopiay a role in the fluctuation dynamics of multicomponent
molecular motions in binary liquid mixtures, while Anisimov equilibrium systems, where the concentration fluctuations of
et al. [16] discussed the role of thermal diffusivity on ran- the different components are coupled, contributing to
dom molecular motions in binary gas mixtures near thecollective-mode fluctuations in the system. However, the
vapor-liquid critical line. We recently discussed the role of simplest situation for examining the consequences of an es-
temperature-induced macroscopic pressure gradients in sdhblished pressure gradient is a binary steady-state liquid
vents on the thermophoresis of dissolved sol{it§%. In this  mixture placed in a constant force field. In this work, we
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examine the processes in such a system, where the contributions of diffusiophoresis and barophoresis can be seen in their
simplest form.
For a binary system, lep,=¢ and ¢;=1-¢, so that Eq(21) takes the following form:

A r2 A
D 1-¢)D,+b (93\Li—1>(4\/—1— )1— .
6_ 1¢+p(1 =~ #)D + bpy, vy VA s VA, P ¢)¢6¢+€._31_32+(u1—pu2)(1-¢)¢ 22

at pl-¢)+¢ pl-¢)+ ¢
HereJ;, are the fluxes of the respective componeptsp,;=v;D;/v,D,, and Eq(16) is utilized. The resulting macroscopic
pressure gradient in a binary mixture is

2
—31—32+{b.322(1—2\/E)[(l—@r—é\/Ew} +Dl—D2}€¢+Gz¢+al(1—¢>
125} A2 rs A2

VP =KT X — — (23
Dovap + Diva(1 - ¢h)
I1l. MAIN OUTCOMES AND RESULTS
A. Stationary binary mixture in a force field
For a stationary system in an impermeable vessel(22).takes the form
- Uy — ply)(1 -
Foe (G, = pi)(1 = )¢ (o

A i /A '
Dih+p(L - 4D, + szz(z_i\/A:;‘ 1)(%\/;:— p)(l -4

2

When the volume fraction of component 2 is lqw~0), tration dependence of the density of the mediyip)
Eqg. (24) is transformed into the equation for a Boltzmann=p;(1-¢)+p,¢ is taken into account,
concentration distribution of that component,

o Pl s __U_z(Pz‘Pl)é B
Vo= oD, b (25 Vo= T d-de. (27

When the volume fraction of component 2 is high~=1), _ _
Eq. (24) is transformed into the equation for the BoltzmannThus, the denominator of Eq24) reflects changes in the

concentration distribution of the first component, mixture behavior due to diffusiophoresis and barophoresis.
In order to evaluate the consequences of diffusiophoresis
- Uy — ply and barophoresis, we will now simplify E¢24). Consider
V= D, b1 (26)  the three parameters having dimensions of volume, namely

the partial molecular volume ,), the hydrodynamic volume
In a gravitational or centrifugal field, parametépd, v['(z), and the specific molecular volunsg,). Equation(24)

-Uy)/pD, in Eq. (25) can be written agv,(p,— pl)é]/kT, can be transformed into a form that contains only ratios of
whereG is the acceleration of the respective force. Likewise,the.Se volume parameters for .Fhe respective component;, or
parameter (i, - pii,)/D, in Eq. (26) can be written as ratios of the associated radii. Then, for molecules with

> shapes that are not too far from spherical, we can assume
[01(p1=p2)G]/KT.  These terms correspond to  the yhege ratios to be about the same for any parameter used as
Archimedes force acting on one component suspended in @e characteristic volume. Among the possibilities, the spe-
second component, where the second component can be cQfiic molecular volumes are convenient because these vol-

sidered the solvent in standard theory. T_hus_, the velqcity Ofimes, and the respective molecule radii, are related by
the second component at low concentration is determined by

the known expression for the Archimedes force. The result-
ing expression takes into account the “barophoretic” force 473 M
[Eq. (4)], and while this relationship has been known for a VT T TN (28)
long time, it is obtained here without assuming any concrete é
form of the pressure gradient in the system.

When no barophoresis or diffusiophoresis is taken intovhere M is the molar massd is density, andN, is
account, Eq(24) can be written using the standard theory of Avogadro’s number. Using this simplification, we can write
sedimentation for concentrated mixtures, where the conceriq. (24) in the following form:
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- i, — pU 1-
Vep=- U~ plp - 1-¢)¢ _ (29)
P2 1+(——1>¢+5&UL<”2\/A—‘1—1>(\/A1 )(1 b
U1 3kTp23 A, A,
[
An additional assumption made in §Q9) is that the hydro- Sov3
dynamic volume of a molecule is equivalent to its specific Ay = A152 2 (30

molecular volume.

The relevant data for benzene and 1,2 dichloroethan&quation(29) can be used for any pair of nonpolar liquids,
(Table ) were taken from Ref{18], except for the value of provided we know the solubility parameters and specific mo-
benzene’s Hamaker constant, which was taken from Relecular volumes for both. The Hamaker constant for 1,2-
[19]. These two solvents were selected because they hawbchloroethane in Table | was calculated using this approxi-
unlimited mutual miscibility, so that mixtures can be mademation.
with any desired volume fraction. Unfortunately, the value of In order to investigate the effect of diffusiophoresis and
the Hamaker constant for 1,2-dichloroethane is not availablebarophoresis, we will look at the deviation in the concentra-
Instead, we used the solubility paramefiewhich expresses tion dependence of the concentration gradient from that com-
the square-root of the interaction energy of the molecules pgsuted using standard theofq. (27)]. For low molecular-
unit volume of liquid[18]. For organic solvents, where the weight species, spatial changes in the component distribution
van der Waals intermolecular interactions are prevailing, onevill be very small, except in very strong centrifugal fields. In
expects the Hamaker constakit= 6%/v2. We can express the such cases, Eq&4)<27) can be used to predict the concen-
number of molecules contained in unit volume ag,ldnd tration dependence of the concentration gradient, and the
the number of the interacting pairs of molecules to be abougradients can be measured using an optical grating technique
1/v2. Using these approximations, the following equation is[20].
obtained that relates an unknown Hamaker constant to that of For mixtures of benzene and 1,2-dichloroethane, the re-
a known value in a different liquid: duced concentration gradient is expressed by

(1-9)¢

F(¢) = . (31)
v AAES \/? )(\/E> .
1 ¢+v1¢+3kT 2’3( A, 1 A, 1)d-4)é

A plot of Eq.(3)) is illustrated in Fig. 1, along with a plot of centration. Then, by measurirkf ¢) at several volume frac-
(1-¢)¢, which expresses the prediction of standard theorytions, calculation of the Hamaker constants will be possible,
The difference between E¢31) and standard theory is quite as specific molecular volumes are readily available in the
significant, even for these two highly miscible liquids. Be- literature. The relevant parameters can also be obtained by
cause the functioil —¢)¢ is universal, the difference be- fitting the experimental data to the theoretical concentration
tween this function and the concentration gradients given bylependence. Conversely, experiments on the partitioning of
Eq. (31) can be used to obtain values of the Hamaker conliquids with known Hamaker constants in a sedimentation
stant. Thus, parametdiv,(p,—py)Gl/KT can be obtained field can be used to check the theory.

from the concentration dependence of the concentration gra- The characteristic value of the stationary concentration
dient at low volume fraction$Eq. (25)], and the derivative gradient[v,(p,— pl)G]/kT for mixtures of benzene and 1,2-
of the concentration gradient calculated as a function of condichloroethane in a gravitational field can be evaluated using

TABLE |. Solvent parameters.

Specific molecular

volume, Molar mass, Density, Hamaker constantSolubility parameter
Solvent v (10?1 cmd) M (g/mol) d(gecm?® A (x108erg 8 (cal cnT®)
1,2-dichloroethane 1.02 99 1.28 8.5 9.78
Benzene 1.16 78 0.89 5.0 9.17
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the equation for gravitational acceleratigr10° cm/< and  present in expressions that describe the fluctuation behavior
the data in Table |. The resulting value+4sl0™® cmit. This  of uniform liquid mixtures.
value could be checked by the optical grating meth2a,
which is sensitive enough to make such measurements. B. Fluctuations in a uniform mixture

We note that the concentration dependence of the station- According to Eq.(24), the symmetrized diffusion equa-
ary concentration gradient contains only thermodynamic pation for fluctuations in the concentratiofip of a uniform
rameters of the liquid components, and no dynamic parambinary mixture, where no external force is applied, taking
eters such as viscosity. However, dynamic parameters will beato account barophoresis effects, is defined by

D1y s i1 - (v_z\/E_ )(r_i\/E_ ) -
T T Y0 A ¥ T i

2
at ? PL-¢)+ ¢ Voo (32

Equation(32) has been linearized because we want to study small fluctuafiérewound a uniform stationary state having
volume fraction¢. We neglected the term in E@g22) related to molecular drift because, as we discussed in the previous
section, such effects are very smédlthough observable by light diffraction techniquesmpared to diffusion for low
molecular weight species in a gravitational field. Thus, the concentration fluctuations in a binary mixture are dominated by
diffusion processes. The concentration fluctuations in liquid mixtures studied by dynamic light sc4g6ritijjare a coupled
diffusion mode with an effective diffusion coefficient given by

Dy . . 2\/5_ )(ﬁ\/g_ ) .
D2¢+p(1 ¢)+5022<Ul A, 1)\ = A, pl(1-¢)¢d

P

s PL-¢)+ o
Applying Eq.(33) using the same simplification procedure as that used to obtai(2Byg.we have
v 4Av4( v A A
¢+ —(1-¢)+ —2—1(—2\/—1 - 1)( Vo - 1)(1—¢>¢
%] 3kTU2 U1 A2 A2
Dei =D, ) 173 . (39
1 1
—— 1 —_ + ——
Uz( ®) e

In the use of Eq(34), we should consider the concentration dependence of the diffusion coefficient that results from a
concentration dependence in the viscosity. Assuming the simplest linear concentration dependence of vieppsity
=m(1-¢)+ 74, we obtain

U1 4A2U1 (2] Al
o+ —(1-0)+ ——| = —-1)1-¢¢
Deit(¢) U2 3kTvy\ vy Ay
= , (39
Dg U1 01/3 72
—(1l-d+—||1+| —-1]|¢
%] U%IS /i

where Dg is the diffusion coefficient of the second compo- theory with benzene as the solvent. Our theory predicts a
nent at high dilution. Using the ratio of the viscosities of markedly different concentration dependence in the diffusion
1,2-dichloroethane and benzefis], which is equal to 1.51, coefficient measured by dynamic light scattering. Thus, our
we plot Eq.(35) in Fig. 2, along with the concentration de- theory predicts a maximum in the concentration dependence,
pendence of the diffusion coefficient based on standarevhich can easily be tested in the laboratory.
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FIG. 1. Dependence of the reduced concentration gradient in
1,2-dichloroethane—benzene mixtures on solvent composition, e>B
pressed as the volume fracti@hof 1,2-dichloroethane. The lower
curve, which has a maximum value of 0.18, is a plot of B{)
(present theory the upper curve, which has a maximum value of
0.25, represents standard thefirg., a plot ofp(1—-¢)].

FIG. 2. The dependence of the effective diffusion coefficient
12 In 1,2-dichloroethane—benzene mixtures on solvent composi-
tion, expressed as the volume fracti¢rof 1,2-dichloroethane. The
concave curve, which has a maximum value of 2.2, plots(85);
the convex curve shows the results obtained using standard theory,
which is based on the concentration dependence of the viscosity.

The following function expresses the ratio of the concen+yoth electric fields and pressure gradients, such as those con-
tration dependence of diffusion predicted by our theory toining ions. Another potential application of the proposed
that of standard theory: approach is to the thermophoresis and diffusiophoresis of

v A v+ [ v A A particles and polymers in solvent mixtures. In such systems,
b+ 2(1-¢)+ —2—1<—2 \ /Kl - 1)( 7 ,A_\l - 1)(1 -$)¢  where concentration gradients are established under the ac-
U2 2 2

3kTvy\vy tion of temperature gradients, gravity, or a centrifugal force,
U1 01’3 ' both the barophoretic force and the thermophoretic or diffu-
0_2(1 —¢)+ JTE siophoretic force must be considered.
2 Our approach compels us to take a fresh look at theories

Analogous to the situation with a stationary concentratiorof separation. For example, in the centrifugation of biologi-
gradient, this ratio depends only on thermodynamic parameal molecules in a density gradient, it is assumed that the
eters of the components. molecules are focused into regions where the density of the
molecule is equal to the density of the surrounding medium.
However, when one considers the barophoretic force, this
assumption requires additional consideration. A similar situ-

The proposed approach to modifying the system of diffu-ation occurs in isoelectric focusing, where the barophoretic
sion equations in concentrated liquid mixtures is shown to béorce can shift the focusing point away from the isoelectric
reasonable in perspective. Differences between the propos@aint. Other preparative separation methods may also be af-
and standard theory are large enough that they can be evalfected by barophoresis, such as liquid chromatography and
ated in the laboratory using mixtures of benzene and 1,2electrophoresis, where concentrated mixtures are processed
dichloroethane. Those differences increase with the volumi an electric field or in hydrodynamic flow. Finally, a num-
fraction of the dilute component, and are observable at &er of industrial and natural processes may be affected by
volume fraction of 10%. barophoresis, such as the distribution of components in a

The method presented in this work for symmetrizing thesubsurface oil reservoir, or any process that is carried out in
diffusion equations may be extended to systems that contaia flow reactor or electric field.
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