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In models of diffusion in multicomponent mixtures, the current practice is to derive equations for an isobaric
system. The equations are nonsymmetric in relation to the components of the mixture, and the concentration of
solvent is assumed to be governed by the conservation of mass instead of its own corresponding diffusion
equation. For concentrated mixtures, the solvent component is selected arbitrarily, which makes interpretation
of the experimental data dependent on the choice of the interpreter. In this work, we derive a symmetric system
of equations, made possible by the introduction of a spontaneously produced secondary pressure gradient. The
effect of that pressure gradient is barodiffusion(barophoresis), defined by the force expressed as the secondary
pressure gradient multiplied by the molecular volume. The model also considers the cross-diffusion(diffusio-
phoresis) that results from the hydrodynamic stresses associated with the local concentration-induced pressure
gradient in liquid layers surrounding individual molecules. The resulting system of diffusion equations, which
contains the secondary pressure gradient and component concentrations, is applied to a binary(nonionic)
mixture of benzene and 1,2-dichloroethane. The steady-state system is placed in a uniform force field, and the
effect of the secondary pressure gradient on the field-induced migration is discussed. Fluctuation dynamics in
a system with no external force field is also discussed. The numerical results predict the establishment of lower
concentration gradients compared to standard theory. Also, the predicted concentration dependence in the
effective diffusion coefficient measured by dynamic light scattering is different compared to standard theory.
Finally, experiments are proposed to further evaluate differences between the new model and the standard
approach.
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I. BACKGROUND

Molecular diffusion is a phenomenon that is important for
a number of natural and technological processes, and it is
studied intensively by both theory and experimentation. The
equations that are used to describe the diffusion process were
derived nearly 100 year ago. The most general form of the
diffusion equations is obtained by nonequilibrium thermody-
namics [1], or by the Maxwell-Stefan approach[2]. Some
approaches to diffusion rely on specific models of the media.
For example, Hunter[3] derives a diffusion equation in
which the medium is considered to be a system of hard
spheres. All these systems of equations, beginning from the
oldest papers to the most recent publications[4,5], contain an
important simplification. Thus, for a multicomponent mix-
ture containingN components,N-1 diffusion equations are
written, and for the last component, the concentration is ob-
tained from the equation for the conservation of mass, in-
stead of using anNth diffusion equation. This simplification
for theNth component is sometimes called the solvent refer-
ence frame in diffusion and thermodiffusion measurements.
In the Maxwell-Stefan and nonequilibrium thermodynamic
approaches, the problem is formulated as a system of equa-
tions that relate the molar fluxes forN-1 components to the
gradients of their chemical potentials, while the chemical
potential of theNth component is found from the Gibbs-
Duhem equation, or from an equation that expresses the con-
servation of mass[4,5]. In order to test the theory with ex-
perimental data, the general equations are reformulated to
include component concentrations instead of chemical poten-
tials.

This approach is reasonable when one considers a solvent
that contains dissolved components at low concentrations be-
cause the solvent can nonarbitrarily be selected as the sec-
ondary component, having a concentration distribution that
follows from that of the other components, as described by
their respective diffusion equations. However, the approach
fails in concentrated systems, where the concentrations of all
components are of the same relative magnitude. In such situ-
ations, selection of the component to be described by conser-
vation of mass instead of its respective diffusion equation is
arbitrary, even in more generalized thermodynamic formula-
tions. Consequently, current theories of diffusion rely onN
+1 equations forN components, yielding a mathematical
problem that lacks a trivial solution. Certainly, a mathemati-
cal solution must exist that yields the same result, indepen-
dent of which component is selected to be the solvent.

The current approach to diffusion also uses a system of
equations derived for an isobaric system[1–5], which ne-
glects the backward action of any pressure gradients in the
system. Yet it is generally accepted that an osmotic pressure
gradient should exist in nonuniform liquid mixtures. Thus,

when a volume forcefW is present in a stationary system, a

macroscopic pressure gradient¹W Pmacro must be established
to compensate the volume force, in order to maintain hydro-
static equilibrium in the mixture. The general equation for
hydrostatic equilibrium is written as[6]

¹W Pmacro− fW = 0W . s1d

In Ref. [6], for example, the authors discuss the production
of a pressure gradient produced by an external field, which is
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assumed to arise from the pressure dependence of the chemi-
cal potentials, and they arrive at the molecular mass transfer
process termed barodiffusion. However, there is no discus-
sion of the spontaneous establishment of such a pressure gra-
dient, and its possible role in the system.

In Ref. [3], Eq. (1) is formulated as a condition for the
absence of convection-diffusion flux of the considered com-
ponent,

1

z

] Pmacro

] n
¹W n −

fW0

z
n = 0W . s2d

Herez is the hydrodynamic friction coefficient,n is the nu-

meric concentration of the considered species, andfW0= fW /n is
the force acting on a single particle. In that work, the follow-
ing equation, which relates the diffusion coefficientD to the
pressure gradient, was obtained:

D =
1

z

] Pmacro

] n
. s3d

In Ref. [7], Eq. (3) is discussed in the context of irreversible
thermodynamics and statistical physics, and the osmotic
pressure gradient is considered to be the main driving force
for diffusion.

In this paper, we propose an approach based on the obvi-
ous statement that when a volume force acts on a system, or
when a concentration gradient is present, a pressure gradient
is established spontaneously. This pressure gradient plays the
role of thesN+1dth unknown function in the system of dif-
fusion equations. In the context of nonequilibrium thermody-
namics, this adds the termv̄iPmacroto the chemical potentials
of the molecules, wherev̄i is the molecular volume of theith
component in the mixture. Parameterv̄i can be expressed as
the partial molecular volume, and determined by a change in
the volume of the system by the addition of one molecule of
the given kind. Also, for such a nonisobaric system, the
Gibbs thermodynamic potential should be considered instead
of the Helmholz thermodynamic potential, which has previ-
ously been used in deriving the system of diffusion equations
[1,2,5]. The observable effect of the secondary pressure gra-
dient on molecular diffusion is a drift motion that can be
described as the respective barodiffusion force acting on the
molecule,

fWP
i = − v̄i¹W Pmacro. s4d

In Ref. [7], a term similar tov̄iPmacro in the chemical poten-
tial was considered, but no conclusion was made as to its
possible role in molecular motion.

A common example of a barodiffusion force is the
Archimedes force, where the pressure gradient is caused by
gravity [8]. We call this force barophoretic, and the resulting
motion barophoresis rather than barodiffusion, because the
induced motion of the molecule is directed, whereas diffu-
sion is a random walk. A similar situation is raised in the
theory of ion movement in electrolytes[9], where the diffu-
sion equations are supplemented by an equation that defines
the electric field required to maintain electrical neutrality in
the system.

In any nonuniform mixture, an osmotic pressure gradient
will be present. For multicomponent mixtures, this pressure
gradient balances the volume force, which is present even in
the absence of an external field. This volume force can be
considered a diffusiophoretic force, which acts on molecules
placed in a concentration gradient[10]. Diffusiophoresis can
be described as the process of one component’s movement in
the presence of a concentration gradient in another compo-
nent. Because we are not aware of any theory developed to
date that is based on a kinetic approach, calculation of the
cross-diffusion coefficient is part of this paper. In order to
determine the secondary pressure gradient in a multicompo-
nent mixture, we first calculate the diffusiophoretic mobili-
ties (cross-diffusion coefficients) for the components. These
parameters are substituted into a symmetrized system of dif-
fusion equations, where the barophoretic force expressed by
Eq. (4) is taken into account. The resulting system of equa-
tions is a closed system that describes the diffusion process.

In our calculations, we use a hydrodynamic approach
taken in the theory of particle diffusiophoresis[10], as well
as in theories of thermophoresis(the movement of mass in
response to a temperature gradient) of molecules and poly-
mers [11]. In this microscopic-kinetic approach, diffusio-
phoresis is considered to result from hydrodynamic stresses
on the molecule. These hydrodynamic stresses are expressed
by gradients in the velocity profile of the liquid, as calculated
by the Navier-Stokes equation[6],

hDuW = − ¹W Ploc. s5d

HereuW is the velocity of the liquid,Ploc is the local pressure
distribution around the molecule due to its interaction with
other molecules, andh is the viscosity of the liquid. The
local pressure distribution is obtained by the condition of the
local equilibrium, which is expressed as the equation of hy-
drostatic equilibrium in the liquid around the molecule of the
ith kind [see Eq.(1)],

dPloc
i

dr
+ o

j=1

N
f j

v j

dFi j

dr
= 0. s6d

Here, r is the radial coordinate for a molecule,f j is the
volume fraction of molecules of thej th kind, v j is the spe-
cific molecular volume occupied in the liquid by a molecule
of the j th kind, andFi j is the respective interaction potential.
For liquids with low electrical conductivity, such that ions
are absent and molecular dissociation does not occur, only
dipole-dipole interactions play a role[12]. Dipole-dipole in-
teractions include those between permanent dipoles(the
Keesom interaction), those between permanent and induced
dipoles(the Debye induction interaction), and those induced
spontaneously(the London or dispersion interaction). Ac-
cording to the Fowkes approach[12], these dipole-dipole
interactions have a common dependence on the distance be-
tween dipoles, and may be written in the following simple
form:
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Fi jsrd = −
16ÎAiAjsr ir jd3

9r6 , s7d

whereAi andAj are the Hamaker constants for the respective
liquids, andr i and r j are the corresponding molecular radii.

II. THEORY

A. Local pressure distribution around the molecule

In order to define the pressure resulting from the interac-
tion of molecules, we assume that the fraction of free volume
in liquids is small enough that intermolecular interactions do
not induce appreciable variations in the liquid molecule con-
centration around a selected molecule. Consequently, we use
a constant(unperturbed) volume fractionfi in solving Eq.
(4) to obtain the pressure profile around the molecule,

Ploc
i = − o

j=1

N
f j

v j
Fi j . s8d

Equation(8) defines the local excess pressure in the liquid
mixture due to the presence of molecules of theith kind and
their interaction with other molecules. Using Eq.(5), we cal-
culate the resulting local pressure gradient in the liquid mix-
ture:

¹W Ploc
i = − o

j=1

N
Fi j

v j
¹W f j + o

j ,k=1

N
Fi j

v j
b jk¹W fk. s9d

Hereb jk=f]sln v jdg / f]sln fkdg is a dimensionless coefficient
that defines the relative change in the specific volume of the
j th component due to a relative change in volume fraction of
thekth component(so-called volume effect). The magnitude
of this coefficient will be similar to the relative “synergistic”
change in volume upon mixing organic solvents and water,
i.e., 10−3–10−2. Thus, when the number of the components is
not too high(less than ten), the second term on the right side
of Eq. (9) can be neglected, and the expression for the local
pressure gradient can be written as

¹W Ploc
i = − o

j=1

N
Fi j

v j
¹W f j . s10d

Equation (10) represents the expression for the local
concentration-induced pressure gradient, which will be used
to solve the hydrodynamic problem of solvent flow around
the selected molecule. This expression is not related to any
model equation of state for the liquid mixture, and contains
only parameters that can be independently obtained.

B. Flow velocity profile around the selected molecule and its
diffusiophoretic mobility

In solving Eq. (3) for a spherical particle, we use the
approach taken in Ref.[13], which utilizes the generalized
reciprocal theorem on the invariance of the following inte-
gral:

hE
S

uW8 · ŝdSW − hE
V

uW8 ·¹W PdV

= h8E
S

uW · ŝ8dSW − h8E
V

uW ·¹W P8dV. s11d

Here,S is the outer surface of a moving body,V is the outer
volume surrounding this surface, andŝ is the hydrodynamic
stress tensor expressed by components of the flow velocity
gradient [6]. The primed and unprimed parameters in Eq.
(11) are interrelated in two separate problems on the move-
ment of the same body. The theorem was proven for the case
in which only a volume force is acting in the liquid, i.e., in
the absence of a pressure gradient. However, the Navier-
Stokes equation allows the external volume force in a liquid
to be interchanged with a predetermined “external” pressure
gradient. Thus, the reciprocal theorem can be “generalized”
to situations in which a predetermined pressure gradient, re-
lated to the excess pressure, is present in a liquid. Using this
generalization, we employ the results of Ref.[13], which
relates particle phoresis to the volume force and fluid veloc-

ity distributionUW 1srWd around a particle moving at unit veloc-
ity. Here, rW is the radius vector directed from the particle
center to the observation point. The velocity distribution

UW 1srWd corresponds to the boundary conditionsUW 1sr =r id
=uW0,UW 1sr =`d=0W, and is defined as[6]

UW 1sidsrWd =
3

4

r i

r
fuW0 + nW0suW0 ·nW0dg +

1

4
S r i

r
D3

fuW0 − 3nW0suW0 ·nW0dg,

s12d

where uW0 and nW0 are unit vectors directed alongUW 1 and rW,
respectively. Using the steady-state condition in which the
sum of the hydrodynamic friction and diffusiophoretic forces
acting on the particle is zero, we obtain the following general
expression for diffusiophoretic velocityUDi:

UDi =
1

6phr i
E

0

p

sin qdqE
ri

`

2pr2dro
j=1

N
dPi

df j
sUW 1sid ·¹W f jd.

s13d

Here,q is the angle between the vectorsuW0 andnW0. Next, we
substitute the expressions for the local pressure gradient[Eq.
(10)] and interaction potential[Eq. (7)] into Eq. (13). After
carrying out some simple but cumbersome integral calcula-
tions, the following expression for diffusiophoretic velocity
is obtained:

UDi =
8r i

2

27h
o
j=1

N ÎAiAj

v j
¹W f j . s14d

Using Eq.(14), we can define the partial diffusiophoretic
mobility (cross-diffusion coefficient), which represents the
velocity of a molecule of theith kind in unit concentration
gradient of thej th component, as follows:
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bDij =
8r i

2

27h

ÎAiAj

v j
. s15d

From Eq.(15), the partial cross-diffusion factor, defined as
SDij =bDij /Di, where Di =kT/6phr i is the Stokes-Einstein
diffusion coefficient of the selected molecule, can be ex-
pressed as

SDij =
4vi

H

3v j

ÎAiAj

kT
, s16d

wherevi
H=s4p /3dr i

3 is the equivalent hydrodynamic volume
of the molecule.

For a binary mixture, Eq.(14) takes the following form:

UD1s2d =
8r1s2d

2

27h

A1s2d

v1s2d
S1 −

v1s2d

v2s1d
ÎA2s1d

A1s2d
D ¹ f, s17d

where the subscript 1(2) refers to the value of the given
parameter for component 1 in the presence of component 2,
and vice versa. Equation(17) predicts diffusiophoresis in
binary mixtures under the following condition:

v1s2d

v2s1d
ÎA2s1d

A1s2d
Þ 1.

Consequently, even in systems with a single type of mol-
ecule, diffusiophoresis cannot be neglected when the mol-
ecules form aggregates, because the aggregates will have a
larger specific volume, even in isotropic mixtures. For such
aggregated species, a positive diffusiophoresis is predicted,
i.e., movement toward regions of lower concentration of the
single molecules. By contrast, in a liquid consisting largely
of associated molecules, any molecules that dissociate into
smaller fragments will undergo negative diffusiophoresis,
moving toward regions of higher concentration of the asso-
ciated molecules. This prediction can be easily checked by
experiment, after substituting the equation for diffusio-
phoretic mobility into the appropriate diffusion equations to
obtain the expected concentration distributions. Thus, Eq.
(14) provides the means for writing the complete system of
diffusion equations for any system with multiple compo-
nents.

C. General system of symmetrized diffusion equations

While the most general form of diffusion equations is
written using chemical potentials, this form is difficult to
compare with experimental data without certain additional
assumptions regarding the concentration dependence of the
chemical potential. Thus, the concentration dependence of
the chemical potential is often impossible to derive theoreti-
cally, or to extract from experimental results. Therefore, we
will rely on equations of mass balance and use expressions
based on Fick’s law for the diffusive flux of components[5].
Although this approach is not as general as those based on
diffusion equations derived in the context of nonequilibrium
thermodynamics, they have a clear physical sense, and can
be evaluated with experimental data obtained in a wide range
of situations, with different applied fields.

When we consider the secondary macroscopic pressure
gradient and related barophoretic force in a system, the dif-
fusion equation takes the following form:

] fi

] t
= ¹W ·HDiF¹W fi + fiS v̄i

kT
¹W P − o

j=1

N

SDij¹W f j −
uW i

Di
DGJ

s18ad
s1 ø i ø Nd.

In Eq. (18a), uW i is the velocity of molecules of theith kind
due to the presence of an external field or flow. Equation
(18a) is the conventional material balance equation for the
ith component. The corresponding mass flux equation is

JW i = −
Di

ni
F¹W fi + fiS v̄i

kT
¹W P − o

j=1

N

SDij¹W f j −
uW i

Di
DG .

s18bd

Equation (18b) contains, from left to right, the diffusion,
barodiffusion, cross-diffusion, and drift(convective) terms.

Of course, the component concentrations must also satisfy
the requirement for conservation of mass,

o
i=1

N

fi = 1. s19d

By summing Eq.(18a) for all components, and utilizing the
mass balance equation, we obtain the following expression
for the macroscopic pressure gradient:

¹W P = kT

− JWS + o
i,j=1

N

bDij¹W f jfi − o
i=1

N

Di¹W fi + o
i=1

N

uW ifi

o
i=1

N

Div̄ifi

,

s20d

where JWS=oi=1
N JW i is the net flux of substance through the

boundaries of the considered volume.
Note that while conservation of mass is used to obtain Eq.

(20), all components are included in the system of diffusion
equations, in contrast to the classical approach where the
concentration of the “solvent” is determined solely by con-
servation of mass. Thus, Eq.(20) can be considered as a
generalization of the Gibbs-Duhem equations to an open
nonequilibrium system, where substance exchange with the
surrounding medium is included. The Gibbs-Duhem equa-
tions are used in Ref.[5] to obtain a relationship between the
gradients of the component chemical potentials in an isolated
system. When one incorporates the concentration and pres-
sure dependence of the component chemical potentials, as
done in Ref.[6], the Gibbs-Duhem equation in the gradient
form (see Ref.[5], supplement 1 to Chap. 15) can be trans-

formed into Eq.(20) with JWS=0W. As outlined in Ref.[6], this
equation can be interpreted as one that formulates the condi-
tion of mechanical(hydrostatic) equilibrium in the system
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under consideration. Because the Gibbs-Duhem equation is
closely related to the equation expressing the condition of
local equilibrium, one can state that mechanical equilibrium
is an essential condition of irreversible thermodynamics.

Equation(20) is similar to the expression for electric field

strength in an electrolytic cell[9]. ParameterJWS is analogous
to the electric current produced by electrochemical processes
at the electrode, which induce a current in the cell. This field
is established in electrolytic cells even when a concentration

gradient is absent. In Eq.(20), the term proportional toJWS

describes the component of the macroscopic pressure gradi-
ent that is related to the flux of substance passing through the
system, i.e., the flux pressure gradient. The term proportional

to oi=1
N Di¹W fi is analogous to the field produced by the so-

called concentration or diffusion potential, and is due to the
difference in diffusion rates of the components, i.e., the dif-
fusion pressure gradient. The diffusion pressure gradient can

also be considered as a generalization of the osmotic pres-
sure gradient. The term proportional tooi=1

N uW ifi corresponds
to the field produced from drift and convective ion transport
in an external field or flow, i.e., the convection pressure gra-
dient; it becomes zero in an electrolytic cell due to electric
neutrality. The term proportional tobDij , which contains the
Hamaker constants of the components, has no direct analog,
as it is related to diffusiophoresis, which has not been studied
in the theory of electrolytic cells. As stated above, the con-
tribution of diffusiophoresis can be neglected in systems of
molecules with small differences in both their Hamaker con-
stants and their molecular volumes. In general, the diffusio-
phoresis effect is a measure of the difference in physico-
chemical properties of the components.

Substituting Eq.(20) for the pressure gradient into the
system of diffusion equations[Eq. (18a) and (18b)], we can
write the symmetrized system of diffusion equations as

] fi

] t
= ¹ Di

o
jÞi

N

pijf j

o
j=1

N

pijf j

¹ fi + ¹W ·

− JWS − o
jÞi

N

Dj¹W f j + uW io
j=1

N Suj

ui
− pijDf j + o

j=1

N

bDij¹W f jo
k=1

N S rk
2

r i
2ÎAk

Ai
− pikDfk

o
j=1

N

pijf j

fi s1 ø i, j ø Nd,

s21d

wherepij = v̄ jDj / v̄iDi is the parameter characterizing the con-
tribution of barophoresis. Equation(21) is structured such
that the effective diffusion coefficient and effective velocity
of a given molecule depend only on the concentration of
other components. Equation(21) demonstrates the important
role played by the macroscopic pressure gradient in the logi-
cal structure of the theory of diffusiophoresis. Among other
things, it eliminates diffusiophoresis in pure liquids, which is
indeed very hard to imagine. Thus, the logical necessity of a
macroscopic pressure gradient is closely interconnected with
the approach used in calculating the parameters of diffusio-
phoresis. Because this approach gives a nonzero partial(di-
agonal) cross-diffusion factorbDii , which formally should
cause diffusiophoresis in a pure liquid, its effect should be
compensated by another force, which is the barophoretic
force described by Eq.(4).

As Eq. (21) shows, the macroscopic pressure gradient
plays a role in mixtures placed in a force field. For nonionic
systems, this could be a temperature gradient, a gravitational
field, or a centrifugal force field. The interrelationship be-
tween thermal diffusivity and mass diffusion is particularly
interesting. For example, Nieuwoudt and Law[14,15] dis-
cussed the influence of a temperature gradient on random
molecular motions in binary liquid mixtures, while Anisimov
et al. [16] discussed the role of thermal diffusivity on ran-
dom molecular motions in binary gas mixtures near the
vapor-liquid critical line. We recently discussed the role of
temperature-induced macroscopic pressure gradients in sol-
vents on the thermophoresis of dissolved solutes[17]. In this

work, we consider gravitational and centrifugal fields.
Macroscopic pressure gradients may be established in

systems where liquid flows or external forces are applied, as
well as in systems where mass transfer occurs only at the
boundaries. If we consider the latter case, in the absence of
any liquid flow or external forces, then the flux of substance

JWS in Eq. (18a) and (18b) includes only the mass transfer
across interface boundaries. This transfer of molecules across
a boundary could be related to an adsorption-desorption pro-
cess, in which specific molecules are dissolving into solution
from one wall of a vessel and removed from solution by
adsorption at another wall. Such a situation could occur, for
example, in a temperature gradient, where the adsorption and
desorption of molecules differ at the cold and hot walls.

In the case of a uniform steady-state mixture, where no
macroscopic external force is applied and no mass transfer at
the boundaries occurs, the secondary pressure gradient and
related coupling between different components can be estab-
lished locally. In this case, the pressure gradient is related to
fluctuations in the local concentration gradients and the re-
lated cross-diffusion(diffusiophoresis). Such processes may
play a role in the fluctuation dynamics of multicomponent
equilibrium systems, where the concentration fluctuations of
the different components are coupled, contributing to
collective-mode fluctuations in the system. However, the
simplest situation for examining the consequences of an es-
tablished pressure gradient is a binary steady-state liquid
mixture placed in a constant force field. In this work, we
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examine the processes in such a system, where the contributions of diffusiophoresis and barophoresis can be seen in their
simplest form.

For a binary system, letf2=f andf1=1−f, so that Eq.(21) takes the following form:

] f

] t
= ¹

D1f + ps1 − fdD2 + bD22Sv2

v1
ÎA1

A2
− 1DS r1

2

r2
2ÎA1

A2
− pDs1 − fdf

ps1 − fd + f
¹W f + ¹W ·

− JW1 − JW2 + suW1 − puW2ds1 − fd
ps1 − fd + f

f. s22d

HereJ1s2d are the fluxes of the respective components,p=p21= v̄1D1/ v̄2D2, and Eq.(16) is utilized. The resulting macroscopic
pressure gradient in a binary mixture is

¹W P = kT3

− JW1 − JW2 + HbD22S1 −
v2

v1
ÎA1

A2
DFs1 − fd

r1
2

r2
2ÎA1

A2
+ fG + D1 − D2J¹W f + uW2f + uW1s1 − fd

D2v̄2f + D1v̄1s1 − fd
. s23d

III. MAIN OUTCOMES AND RESULTS

A. Stationary binary mixture in a force field

For a stationary system in an impermeable vessel, Eq.(22) takes the form

¹W f = −
suW1 − puW2ds1 − fdf

D1f + ps1 − fdD2 + bD22Sv2

v1
ÎA1

A2
− 1DS r1

2

r2
2ÎA1

A2
− pDs1 − fdf

. s24d

When the volume fraction of component 2 is lowsf<0d,
Eq. (24) is transformed into the equation for a Boltzmann
concentration distribution of that component,

¹W f =
puW2 − uW1

pD2
f. s25d

When the volume fraction of component 2 is highsf<1d,
Eq. (24) is transformed into the equation for the Boltzmann
concentration distribution of the first component,

¹W f1 =
uW1 − puW2

D1
f1. s26d

In a gravitational or centrifugal field, parameterspuW2

−uW1d /pD2 in Eq. (25) can be written asfv̄2sr2−r1dGW g /kT,

whereGW is the acceleration of the respective force. Likewise,
parameter suW1−puW2d /D1 in Eq. (26) can be written as

fv̄1sr1−r2dGW g /kT. These terms correspond to the
Archimedes force acting on one component suspended in a
second component, where the second component can be con-
sidered the solvent in standard theory. Thus, the velocity of
the second component at low concentration is determined by
the known expression for the Archimedes force. The result-
ing expression takes into account the “barophoretic” force
[Eq. (4)], and while this relationship has been known for a
long time, it is obtained here without assuming any concrete
form of the pressure gradient in the system.

When no barophoresis or diffusiophoresis is taken into
account, Eq.(24) can be written using the standard theory of
sedimentation for concentrated mixtures, where the concen-

tration dependence of the density of the mediumrsfd
=r1s1−fd+r2f is taken into account,

¹W f = −
v̄2sr2 − r1dGW

kT
s1 − fdf. s27d

Thus, the denominator of Eq.(24) reflects changes in the
mixture behavior due to diffusiophoresis and barophoresis.

In order to evaluate the consequences of diffusiophoresis
and barophoresis, we will now simplify Eq.(24). Consider
the three parameters having dimensions of volume, namely
the partial molecular volumev̄1s2d, the hydrodynamic volume
v1s2d

H , and the specific molecular volumev1s2d. Equation(24)
can be transformed into a form that contains only ratios of
these volume parameters for the respective components, or
ratios of the associated radii. Then, for molecules with
shapes that are not too far from spherical, we can assume
these ratios to be about the same for any parameter used as
the characteristic volume. Among the possibilities, the spe-
cific molecular volumes are convenient because these vol-
umes, and the respective molecule radii, are related by

v =
4pr3

3
=

M

Nad
, s28d

where M is the molar mass,d is density, andNa is
Avogadro’s number. Using this simplification, we can write
Eq. (24) in the following form:
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¹W f = −
uW1 − puW2

pD2

s1 − fdf

1 +Sv2

v1
− 1Df +

4

3

A2

kT

v1
2/3

v2
2/3Sv2

v1
ÎA1

A2
− 1DSÎA1

A2
− 1Ds1 − fdf

. s29d

An additional assumption made in Eq.(29) is that the hydro-
dynamic volume of a molecule is equivalent to its specific
molecular volume.

The relevant data for benzene and 1,2 dichloroethane
(Table I) were taken from Ref.[18], except for the value of
benzene’s Hamaker constant, which was taken from Ref.
[19]. These two solvents were selected because they have
unlimited mutual miscibility, so that mixtures can be made
with any desired volume fraction. Unfortunately, the value of
the Hamaker constant for 1,2-dichloroethane is not available.
Instead, we used the solubility parameterd, which expresses
the square-root of the interaction energy of the molecules per
unit volume of liquid[18]. For organic solvents, where the
van der Waals intermolecular interactions are prevailing, one
expects the Hamaker constantA<d2/v2. We can express the
number of molecules contained in unit volume as 1/v, and
the number of the interacting pairs of molecules to be about
1/v2. Using these approximations, the following equation is
obtained that relates an unknown Hamaker constant to that of
a known value in a different liquid:

A2 > A1
d2

2v1
2

d1
2v2

2 . s30d

Equation(29) can be used for any pair of nonpolar liquids,
provided we know the solubility parameters and specific mo-
lecular volumes for both. The Hamaker constant for 1,2-
dichloroethane in Table I was calculated using this approxi-
mation.

In order to investigate the effect of diffusiophoresis and
barophoresis, we will look at the deviation in the concentra-
tion dependence of the concentration gradient from that com-
puted using standard theory[Eq. (27)]. For low molecular-
weight species, spatial changes in the component distribution
will be very small, except in very strong centrifugal fields. In
such cases, Eqs.(24)–(27) can be used to predict the concen-
tration dependence of the concentration gradient, and the
gradients can be measured using an optical grating technique
[20].

For mixtures of benzene and 1,2-dichloroethane, the re-
duced concentration gradient is expressed by

Fsfd =
s1 − fdf

1 − f +
v2

v1
f +

4

3

A2

kT

v1
2/3

v2
2/3Sv2

v1
ÎA1

A2
− 1DSÎA1

A2
− 1Ds1 − fdf

. s31d

A plot of Eq. (31) is illustrated in Fig. 1, along with a plot of
s1−fdf, which expresses the prediction of standard theory.
The difference between Eq.(31) and standard theory is quite
significant, even for these two highly miscible liquids. Be-
cause the functions1−fdf is universal, the difference be-
tween this function and the concentration gradients given by
Eq. (31) can be used to obtain values of the Hamaker con-
stant. Thus, parameterfv̄2sr2−r1dGW g /kT can be obtained
from the concentration dependence of the concentration gra-
dient at low volume fractions[Eq. (25)], and the derivative
of the concentration gradient calculated as a function of con-

centration. Then, by measuringFsfd at several volume frac-
tions, calculation of the Hamaker constants will be possible,
as specific molecular volumes are readily available in the
literature. The relevant parameters can also be obtained by
fitting the experimental data to the theoretical concentration
dependence. Conversely, experiments on the partitioning of
liquids with known Hamaker constants in a sedimentation
field can be used to check the theory.

The characteristic value of the stationary concentration

gradientfv̄2sr2−r1dGW g /kT for mixtures of benzene and 1,2-
dichloroethane in a gravitational field can be evaluated using

TABLE I. Solvent parameters.

Solvent

Specific molecular
volume,

v s1021 cm3d
Molar mass,
M sg/mold

Density,
d sg cm−3d

Hamaker constant,
A s31013 ergd

Solubility parameter
d scal cm−3d

1,2-dichloroethane 1.02 99 1.28 8.5 9.78

Benzene 1.16 78 0.89 5.0 9.17
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the equation for gravitational accelerationg=103 cm/s2 and
the data in Table I. The resulting value is,10−5 cm−1. This
value could be checked by the optical grating method[20],
which is sensitive enough to make such measurements.

We note that the concentration dependence of the station-
ary concentration gradient contains only thermodynamic pa-
rameters of the liquid components, and no dynamic param-
eters such as viscosity. However, dynamic parameters will be

present in expressions that describe the fluctuation behavior
of uniform liquid mixtures.

B. Fluctuations in a uniform mixture

According to Eq.(24), the symmetrized diffusion equa-
tion for fluctuations in the concentrationdf of a uniform
binary mixture, where no external force is applied, taking
into account barophoresis effects, is defined by

] df

] t
= ¹ D2

D1

D2
f + ps1 − fd + SD22Sv2

v1
ÎA1

A2
− 1DS r1

2

r2
2ÎA1

A2
− pDs1 − fdf

ps1 − fd + f
¹W df. s32d

Equation(32) has been linearized because we want to study small fluctuationsdf around a uniform stationary state having
volume fractionf. We neglected the term in Eq.(22) related to molecular drift because, as we discussed in the previous
section, such effects are very small(although observable by light diffraction techniques) compared to diffusion for low
molecular weight species in a gravitational field. Thus, the concentration fluctuations in a binary mixture are dominated by
diffusion processes. The concentration fluctuations in liquid mixtures studied by dynamic light scattering[20,21] are a coupled
diffusion mode with an effective diffusion coefficient given by

Deff = D2

D1

D2
f + ps1 − fd + SD22Sv2

v1
ÎA1

A2
− 1DS r1

2

r2
2ÎA1

A2
− pDs1 − fdf

ps1 − fd + f
. s33d

Applying Eq. (33) using the same simplification procedure as that used to obtain Eq.(24), we have

Deff = D2

f +
v1

v2
s1 − fd +

4A2

3kT

v1

v2
Sv2

v1
ÎA1

A2
− 1DSÎA1

A2
− 1Ds1 − fdf

v1

v2
s1 − fd +

v1
1/3

v2
1/3f

. s34d

In the use of Eq.(34), we should consider the concentration dependence of the diffusion coefficient that results from a
concentration dependence in the viscosity. Assuming the simplest linear concentration dependence of viscosityhsfd
=h1s1−fd+h2f, we obtain

Deffsfd

D2
0

=

f +
v1

v2

s1 − fd +
4A2

3kT

v1

v2
1v2

v1

ÎA1

A2

− 121ÎA1

A2

− 12s1 − fdf

3v1

v2

s1 − fd +
v1

1/3

v2
1/3

f431 +1h2

h1

− 12f4
, s35d

whereD2
0 is the diffusion coefficient of the second compo-

nent at high dilution. Using the ratio of the viscosities of
1,2-dichloroethane and benzene[18], which is equal to 1.51,
we plot Eq.(35) in Fig. 2, along with the concentration de-
pendence of the diffusion coefficient based on standard

theory with benzene as the solvent. Our theory predicts a
markedly different concentration dependence in the diffusion
coefficient measured by dynamic light scattering. Thus, our
theory predicts a maximum in the concentration dependence,
which can easily be tested in the laboratory.
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The following function expresses the ratio of the concen-
tration dependence of diffusion predicted by our theory to
that of standard theory:

f +
v1

v2
s1 − fd +

4A2

3kT

v1

v2
Sv2

v1
ÎA1

A2
− 1DSÎA1

A2
− 1Ds1 − fdf

v1

v2
s1 − fd +

v1
1/3

v2
1/3f

.

Analogous to the situation with a stationary concentration
gradient, this ratio depends only on thermodynamic param-
eters of the components.

IV. CONCLUSIONS

The proposed approach to modifying the system of diffu-
sion equations in concentrated liquid mixtures is shown to be
reasonable in perspective. Differences between the proposed
and standard theory are large enough that they can be evalu-
ated in the laboratory using mixtures of benzene and 1,2-
dichloroethane. Those differences increase with the volume
fraction of the dilute component, and are observable at a
volume fraction of 10%.

The method presented in this work for symmetrizing the
diffusion equations may be extended to systems that contain

both electric fields and pressure gradients, such as those con-
taining ions. Another potential application of the proposed
approach is to the thermophoresis and diffusiophoresis of
particles and polymers in solvent mixtures. In such systems,
where concentration gradients are established under the ac-
tion of temperature gradients, gravity, or a centrifugal force,
both the barophoretic force and the thermophoretic or diffu-
siophoretic force must be considered.

Our approach compels us to take a fresh look at theories
of separation. For example, in the centrifugation of biologi-
cal molecules in a density gradient, it is assumed that the
molecules are focused into regions where the density of the
molecule is equal to the density of the surrounding medium.
However, when one considers the barophoretic force, this
assumption requires additional consideration. A similar situ-
ation occurs in isoelectric focusing, where the barophoretic
force can shift the focusing point away from the isoelectric
point. Other preparative separation methods may also be af-
fected by barophoresis, such as liquid chromatography and
electrophoresis, where concentrated mixtures are processed
in an electric field or in hydrodynamic flow. Finally, a num-
ber of industrial and natural processes may be affected by
barophoresis, such as the distribution of components in a
subsurface oil reservoir, or any process that is carried out in
a flow reactor or electric field.
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